Institut für Solarenergieforschung GmbH Hameln / Emmerthal

Test Centre for Solar Thermal Components and Systems

Report of Performance Test according to EN 12975-2 for a Glazed Solar Collector

Test	Centre		
	Address	Institut für Solarenergieforschung GmbH, Hameln/Emmerthal Am Ohrberg 1 31860 Emmerthal, Germany	Deutscher Akkreditierungs Rat DAP-PL-3662.00
	Contact person	DiplIng. C. Lampe Tel.: +49 (0)5151/ 999-522 Fax: -500 E-Mail: Pruefstelle@isfh.de	
Test	Basis		
	Test according to	EN 12975-2:2006 Section 6	
Test	Report		
	Number Date Number of pages	106-06/D 02.11.2006 20	
Cust	tomer		
	Address	Thermomax Ltd. Balloo Crescent Bangor, BT 19 7UP United Kingdom	
	Contact person	Herr Carsten Onneken Tel.: +44 2891 270-411, Fax: -572	
Test	Collector		
	Type Manufacturer Serial- or Prototype Year of production Serial number	DF 100 20 Thermomax Ltd. Serial type 2006 MB 08626	

Company:	Thermomax Ltd.	Page:	2 of 20
Type:	DF 100 20	Report no.:	106-06/D
Serial no.:	MB 08626	Report date:	02.11.2006

Contents

1.	Summary		3
2.	Description	of the Collector	4
3.	Validity		5
4.	Photograph	and Sketch of the Collector	6
5.	Sampling		7
6.	Documents	; Collector Identification	7
7.	Installation	of Sensors	7
8.	Exposure to	o Irradiation	8
9.	Determinat	ion of the Stagnation Temperature	8
	9.1. Mathe	ematical Procedure	8
	9.2. Test (Conditions and Results	9
10.	Instantaneo	ous Collector Efficiency	10
	10.1. Test F	Procedure	10
	10.2. Indica	tions for the Sun Simulator	10
	10.3. Mathe	ematical Description	10
11	10.4. Test (Conditions and Results	10
11.			11
	11.1.1estr	enatical Description	12
	11.3. Test (Conditions and Results	13
12.	Thermal Ca	apacity of the Collector	14
13.	Pressure D	rop across the Collector	15
	13.1. Test F	Procedure	15
	13.2. Test (Conditions and Results	15
14.	Observation	ns; Status of the Collector	16
15.	Stipulations	from the Test Centre	16
Арр	endix:		
	Table A-1:	Measured and Calculated Data from the Efficiency Tests,	
		Related to the Aperture Area	17
	Table A-2:	Temperatures at Different Positions of the Collector,	
		Meteorological Quantities	18
	Diagram:	Power Curve for $G = 1000 \text{ W/m}^2$, Related to Collector Unit	19
	Diagram:	Collector Efficiency Curve for $G = 800 \text{ W/m}^2$, Related to the A	perture
		Area	20

Institut für Solarenergieforschung GmbH Hameln / Emmerthal

Test Centre for Solar Thermal Components and Systems

1. Summary

Company:	Thermomax Ltd. Balloo Crescent Bangor, BT 19 7UP, United King- dom	Report no.: Report date:	106-06/D 02.11.2006
Туре:	DF 100 20	Serial no.: Year of production:	MB 08626 2006

The following results were obtained from a test of the thermal performance of a solar collector according to **EN 12975-2:2006**. They apply to the collector described more precisely in the test report no. 106-06/D and to the tests and procedures described herein.

Description of the collector											
Typeevacuated tubular collectorLength/Width/Height1996 / 1418 / 97 mmMax. operation pressure8 barWeight, empty54.8 kgHeat transfer fluidpolypropylene				Aperture area Absorber area Gross area Recommended flow rate Thickness of absorber sheet number of tubes			2 2 6 eet (2	2.153 2.004 2.830 6015 0.12 m 20	m² m² m² 0 kg/m²h าm		
Test results											
Coefficients of efficient (determined in the sun simulator SU: $\eta = \eta_0 - a_1 \cdot (t_m)$	icy s⊡ -t _a)/G - a ₂ ⋅ (t _m -t _a)²/G		Based on: η ₀ = a ₁ = a ₂ =	apertur 0.773 1.43 W 0.0059	e area /m²K W/m²K²	abso 0.830 1.53 0.006	rber a) W/m²l 63 W/ı	rea K m²K²	
Incident angle modifie (determined outdoor)	r										
proj. angle of in	cidence θ	0)°	10°	20°	30°	40°	50)°	60°	
$K_{\theta b, trans}(\theta_{trans})$		1.	00 1	00.1	1.02	1.04	1.05	0.9	99	0.85	
$K_{\Theta b,long}(\Theta_{long})$		1.	00 1	00.1	0.99	0.98	0.96	0.9	92	0.86	
$K_{\theta d}$ =						0.	88				
Power output per collector unit Tm - Ta 400 W/m² 10 K 634			Irrad 700 11	iance W/m²		100)0 W/r 1632	n²			
50 K		562				202 80			1301		
Peak power per collector unit 1664 W _{peak}					at G = 1000 W/m ² and $t_m - t_a = 0 K$						
Pressure drop (water, 20 °C) Δp = Δp = Δp =			1.6 mbar 6.9 mbar	•	at ṁ = 70.8 kg/h at ṁ = 209.9 kg/h						
Thermal capacity (calculated) c = 9.3 kJ/(r			9.3 kJ/(m	ו²K)		C =	20.1 kJ/	K			
Stagnation temperature t _{stg} = 286 °C			at G_S = 1000 W/m² and t _{as} = 30 °C								
En	nmerthal, 02	2.11.2	2006	рр	(ud	~ Lo	~p	-		

Dipl.-Ing. C. Lampe, deputy head of Test Centre-EN

Institut für Solarenergieforschung GmbH, Hameln / Emmerthal; Am Ohrberg 1; 31860 Emmerthal; Germany

Company:	Thermomax Ltd.	Page:	4 of 20
Type:	DF 100 20	Report no.:	106-06/D
Serial no.:	MB 08626	Report date:	02.11.2006

2. Description of the Collector

2.1. Collector

	Manufacturer	Thermomax Ltd. Balloo Crescent; Bangor, BT 19 7UP;United Kingdom
	Туре	DF 100 20
	Construction	evacuated tubular collector, Serial type
	Year of production	2006
	Serial number	MB 08626
	Weight, empty, without glazing	28.3 kg (according to manufacturer)
	Weight, empty, with glazing	54.8 kg (weighed at ISFH)
2.2.	Evacuated Tubes	
	Number of tubes	20
	Dimensions	65 mm / 1.5 mm (outer diameter/ thickness)
	Material	borosilicate glass, clear
	Aperture area	20 x 1736.5 mm x 62 mm = 2.153 m²
2.3.	Absorber	
	Absorber material	copper sheet, thickness 0.12 mm (according to manufac- turer)
	Material of fluid tubes	copper
	Connection between absorber and tubes	inductive welding
	Hydraulic construction	parallel
	Absorber layer	selective (TiNOX, type TiNOX)
	Absorber dimensions	20 x 1698.5 mm x 59 mm = 2.004 m ² (according to manufacturer)
2.4.	Heat Transfer Fluid	
	Specifications	polypropylene
	Alternative acceptable heat	no details
	Fluid content	3.8 L (weighed at ISEH)
25	Casing	
2.5.		1006 / 1119 / 07 mm
	Material of frame	
26	Inculation in the Distribut	
2.0.		
	Insulation construction	machine-cut toamed plastic
07		roamed melamine resin
2.1.	Reference Areas	
	Absorber area	2.004 m ²
	Aperture area	2.153 m ²
	Gross area	2.830 m ²

Company:	Thermomax Ltd.	Page:	5 of 20
Type:	DF 100 20	Report no.:	106-06/D
Serial no.:	MB 08626	Report date:	02.11.2006

2.8. Collector Mounting

Collector tilt angle	0°90°
On sloped roof	yes
Integrated into sloped roof	no
On flat roof	yes
On flat roof with stand	yes
Facade	yes

3. Validity

- 1. This test report is valid for the collector DF 100 20 (description see section 2) with the serial number MB 08626.
- 2. According to the customers specifications the collector type DF 100 20 is distributed with the selective absorber layer type TiNOX (TiNOX) and type Sunselect (Alanod-Sunselect). In an agreement of the Erfahrungsaustauschkreis "Thermische Solaranlagen und deren Bauteile"(EK-TSuB) which consists of represantatives from all German-speaking test centres acknowledged by DIN CERTCO (Certification body of DIN) the test results of this two absorber layers are transverable (confirmed 21.03.2006). Therefore the report no. 106-06/D is also valid for the collector type DF 100 20 with the selective absorber layer type Sunselect (Alanod-Sunselect).

Company:	Thermomax Ltd.	Page:	6 of 20
Type:	DF 100 20	Report no.:	106-06/D
Serial no.:	MB 08626	Report date:	02.11.2006

4. Photograph and Sketch of the Collector

Fig. 4-1: Picture of the collector, mounted in the sun simulator SUSI I

Fig. 4-2: Sketch of the collector

Company:	Thermomax Ltd.	Page:	7 of 20
Type:	DF 100 20	Report no.:	106-06/D
Serial no :	MB 08626	Report date:	02 11 2006

5. Sampling

Date of sampling:	29.03.2006
Place of sampling:	Store of the company Thermomax Ltd.; Bangor, BT 19 7UP; United Kingdom
Inspector:	Daniel Eggert (employee of the Test Centre)
Description of sampling:	

The collector casing with the serial number MB 08626 and the evacuated tubes with the serial number C063LT00026, C063LT00025, C063LT00024 and C063LT00023 were chosen out of more than 6 identically products. The products were marked in the store and delivered to the test centre. The customer has proved with his quality management that the chosen products accord with the serial production.

6. Documents; Collector Identification

Drawings:	 The following drawings were presented by the customer * sketch of the collector * Top view * Lateral view
Collector data sheet:	A data sheet with details about the tested collector was presented by the customer.
Labelling of the col- lector:	The test collector has a durable type label. The label is fixed inside the manifold lid to avoid early destruction. The manifold can be ope- ned without any tool. The stagnation temperature isn't printed on the label, because the determination will be carried out with this report.
Installer instruction manual:	The following documents were presented by the customer: Installation manual (2006 B4815A) Operatung manual (2006 B4986A)

7. Installation of Sensors

The collector was equipped with temperature sensors (Pt 100, class A), as described in the following. Care was taken that the sensors do not influence the results of the following tests. The temperatures measured are given in table A-2 in the appendix.

Company:	Thermomax Ltd.	Page:	8 of 20
Type:	DF 100 20	Report no.:	106-06/D
Serial no.:	MB 08626	Report date:	02.11.2006

Name of the sensor	Position
t _{sm}	Absorber temperature sensor, at 2/3 of the height of the absorber tube, inside the 10th fluid tube (installed only during the exposure to irradiation)
t _{glas}	Glass temperature sensor, at 2/3 of the height of the glass tube (10th tube from the left side)
t _{back}	Backside temperature sensor (exactly beneath glass temperature sensor)

8. Exposure to Irradiation

The empty collector was exposed to irradiation before the performance test.

<u>Tab. 8-1:</u>	Test conditions	during the e	exposure
------------------	-----------------	--------------	----------

Date: Test facility: Inspector:	05.04.2006 SUSI I (indoor test with sun simulator) Gerd Schiewe (employee of the Test Centre)		
		Conditions stipulated in EN 12975-2	Test conditions
Collector tilt angle		-	45 °
Solar irradiance		> 700 W/m²	895 W/m²
Ambient temperature, mean value		-	30.1 °C
Duration of exposure		> 5 h	5 h
Result:			
The collector showed no changes during and after the exposure test.			

9. Determination of the Stagnation Temperature

During the exposure to irradiation (see section 8), the stagnation temperature of the collector was determined.

9.1. Mathematical Procedure^a

$$t_{stg} = a \cdot G_s^{\frac{1}{1.3}} + t_{as}$$

eqn. (9.1)

Company:	Thermomax Ltd.	Page:	9 of 20
Type:	DF 100 20	Report no.:	106-06/D
Serial no.:	MB 08626	Report date:	02.11.2006

t _{stg}	= stagnation temperature under standard conditions in °C
Gs	= standard global irradiance
t _{as}	= standard ambient temperature

$$a = \frac{(t_{sm} - t_{am})}{G_m^{1/1.3}}$$
 eqn. (9.2)

t_{sm} = measured absorber temperature in °C

t_{am} = measured ambient temperature in °C

 G_m = measured global irradiance (in the collector plane) in W/m²

9.2. Test Conditions and Results

Date: Test facility: Inspector: Collector tilt angle:	05.04.2006 SUSI I (indoor test with sun simulator) Gerd Schiewe (employee of the Test Centre) 45°			
	Test conditions	Standard conditions according to ISO 9806-2		
		Class A (temperate), cor- responding to conditions stipulated in EN 12975-2	Class B (sunny)	
Global irradiance	895 W/m²	1000 W/m²	1100 W/m²	
Surrounding air speed	< 1 m/s	< 1 m/s	< 1 m/s	
Ambient temperature	30.1 °C	30 °C	40 °C	
Measured absorber temperature (t _{sm})	264.9 °C			
Calculated stagnation (t _{stg})	temperature	286 °C	315 °C	

a. For the calculation of the stagnation temperature under standard conditions, the eqns. (9.1) and (9.2) are used, as this method has a lower uncertainty than the procedure described in EN 12975-2.

Company:	Thermomax Ltd.	Page:	10 of 20
Type:	DF 100 20	Report no.:	106-06/D
Serial no.:	MB 08626	Report date:	02.11.2006

10. Instantaneous Collector Efficiency

10.1. Test Procedure

Thermal performance testing under steady state conditions by using a solar irradiance simulator (see EN 12975-2, section 6.1.5).

10.2. Indications for the Sun Simulator

The sun simulator in use adheres to the requirements given in EN 12975-2, section 6.1.5.2. To evaluate the quality of indoor measurement, the value of convperformanceersion factor η_0 measured by using the sun simulator was compared to that from outdoor measurement (determined simultaneously to the incidence angle modifier, see section 11). As a result, the conversion factor was marginally adjusted. The conversion factor η_0 given in this report corresponds to a value that would be measured outdoor at a ratio of diffuse to global radiation of $G_d/G = 0.15$.

10.3. Mathematical Description

$$\eta = \eta_0 - a_1 \cdot \frac{t_m - t_a}{G} - a_2 \cdot \frac{(t_m - t_a)^2}{G}$$
 eqn. (10.1)

η	= efficiency
η_0	= efficiency for $t_m - t_a = 0$ (conversion factor)
a ₁	= heat loss coefficient, independent of temperature, in W/m ² K
a ₂	= heat loss coefficient, depending on temperature, in W/m ² K ²
G	= global irradiance in W/m ²
t _m	= mean fluid temperature in the collector in °C, t_m : = $(t_{in} + t_e)/2$
t _{in}	= collector inlet temperature in °C
t _e	= collector outlet temperature in °C
t _a	= ambient temperature in °C
T _m *	= reduced temperature difference, in m ² K/W

10.4. Test Conditions and Results

The test conditions are shown in table 10-1. All measured data are given in table A-1 and table A-2 in the appendix.

Company:	Thermomax Ltd.	Page:	11 of 20
Type:	DF 100 20	Report no.:	106-06/D
Serial no.:	MB 08626	Report date:	02.11.2006

<u>Tab. 10-1:</u> Test conditions of the efficiency measurements in the sun simulator

Date: Test facility: Inspector: Lamps used: Heat transfer fluid:	06.04.2006 and 07.04.2006 SUSI I (indoor test with sun simulator) Gerd Schiewe (employee of the Test Centre) halogen lamps, Philips type 13117 water		
		Conditions stipula- ted in EN 12975-2	Test conditions
Collector tilt angle		4050°	45°
Mean global irradiance		> 700 W/m²	872 W/m²
Mean thermal irradiance ¹⁾		\leq 498 W/m ²	443 W/m ²
Mean ambient temperature		-	26.0 °C
Mean air speed over the collector		3 m/s±1 m/s	3.3 m/s
Mass flow rate of the heat transfer fluid		0.02 kg/(m ² s) or according to manufacturer	150 kg/h

1) For protection against long wave radiation there is an air cooled channel, made of two acrylic glass panes, between the lamps and the collector. The thermal irradiance is determined from a measurement of the surface temperature of the lower acrylic glass pane.

Tab. 10-2: Coefficients of the efficiency curve,	, related to different areas
--	------------------------------

Related to area:	η ₀	a ₁	a ₂
Aperture area (2.153 m²)	0.773	1.43 W/m²K	0.0059 W/m²K²
Absorber area (2.004 m ²)	0.830	1.53 W/m²K	0.0063 W/m²K²
Gross area (2.830 m ²)	0.588	1.08 W/m²K	0.0045 W/m²K²

Note:

If the parameters are given in the documents of the collector, the area to which they are related must be mentioned.

The power curve per collector unit for $G = 1000 \text{ W/m}^2$ is given on page 19.

11. Incident Angle Modifier of the Collector

11.1. Test Procedure

The collector is mounted on the outdoor test facility (Tracker), facing south in a fixed

Company:	Thermomax Ltd.	Page:	12 of 20
Туре:	DF 100 20	Report no.:	106-06/D
Serial no .:	MB 08626	Report date:	02.11.2006

position. The variation of the incident angle is achieved by the sun's path over the collector. The vacuum tube collector on hand shows a biaxial incident angle dependence. So, after determination of the transversal incident angle modifier the collector is turned by 90°, and the longitudinal incident angle modifier is determined in a second measurement. The incident angle modifiers for direct radiation and for diffuse radiation are determined separately.

11.2. Mathematical Description

$$K_{\theta b}(\theta) = \frac{F'(\tau \alpha)_{en}(\theta)}{F'(\tau \alpha)_{en}} \qquad eqn. (11.1)$$

 $K_{\theta b}(\theta)$ = incident angle modifier for beam radiation as a function of the incident angle θ

 $F'(\tau \alpha)_{en}$ = conversion factor for pure beam radiation at normal incidence

 $F'(\tau \alpha)_{en}(\theta)$ = conversion factor for pure beam radiation as a function of the incident angle θ

The incident angle modifier for beam radiation must be split into a transversal and a longitudinal component:

$$K_{\theta b}(\theta) = K_{\theta b, trans}(\theta_{trans}) \cdot K_{\theta b, long}(\theta_{long}) \qquad \text{eqn. (11.2)}$$

 θ_{trans} = transversal incident angle

 θ_{long} = longitudinal incident angle

Company:	Thermomax Ltd.	Page:	13 of 20
Type:	DF 100 20	Report no.:	106-06/D
Serial no.:	MB 08626	Report date:	02.11.2006

11.3. Test Conditions and Results

Tab. 11-1: Test conditions during the measurement of the incident angle modifier

r				
Date:	03.05.2006 to 05.05.2006			
Test facility:	Testdach			
Inspector:	Florian Kohlen	berg (Mitarbeiter des Prü	ifzentrums)	
Heat transfer fluid:	water	3 (,	
		Conditions stipulated	Test conditions	
		in EN 12975-2		
Collector tilt angle		40 50°	2001)	
		4050	50 /	
Collector azimuth angle		_	0° (south)	
	gio		0 (00001)	
Mass flow rate m		0.02 kg/(m²s)	150 kg/b	
		or according to manufacturer	150 Kg/11	
Latitude		_	52 1° N	
Latitude			JZ.1 N	
Longitude		_	9.4° F	
Longitude			J.7 L	
Local time (MEZ) at	solar noon	_	12.10	
			12.10	

1) This tilt angle was selected in order to achieve the best approximation of normal irradiance. The tilt angle is only insignificantly below the smallest demanded value. The influence of the tilt angle on the collector performance is assessed to be minimal in this range of angles.

Tab. 11-2: Incident angle modifier

θ_{trans} or θ_{long}	0°	10°	20°	30°	40°	50°	60°
$\mathbf{K}_{\theta \mathbf{b}, trans}(\theta_{trans})$	1.00	1.00	1.02	1.04	1.05	0.99	0.85
$K_{\theta b,long}(\theta_{long})$	1.00	1.00	0.99	0.98	0.96	0.92	0.86
$K_{ ext{ heta}d}$				0.88			

Nomenclature

θ_{trans}	= transversal incident angle
θ_{long}	= longitudinal incident angle
$K_{\theta b}(\theta)$	= incident angle modifier for beam radiation as a function of the incident
	angle θ
$K_{ ext{ heta}d}$	= incident angle modifier for diffuse radiation

Company:	Thermomax Ltd.	Page:	14 of 20
Туре:	DF 100 20	Report no.:	106-06/D
Serial no.:	MB 08626	Report date:	02.11.2006

12. Thermal Capacity of the Collector

The thermal capacity of the collector is calculated according to EN 12975-2, as the sum of the capacities of its constituent elements, taking into account weighting factors. These weighting factors evaluate that some elements are only partially involved in the thermal inertia of the collector.

$$C = \sum p_i \cdot m_i \cdot c_i \qquad \text{eqn. (12.1)}$$

2975-

c_i = specific thermal capacity of the component kJ/(kgK)

12.1. Result

Date: Inspector:	20.07.2006 Wolfgang Wetzel	
		calculated according to EN 12975-2
effective therm	nal capacity	20.1 kJ/K
specific thermal capacity related to the aperture area		9.3 kJ/(m²K)

Company. Thermo	max Ltd. Page:	15 of 20
Type: DF 100	20 Report r	no.: 106-06/D

13. Pressure Drop across the Collector

13.1. Test Procedure

The pressure drop is measured at different mass flow rates according to EN 12975-2, chapter 6.1.8.

13.2. Test Conditions and Results

Tab. 13-1: Results of the pressure drop measurements

Date: Test facility: Inspector: Heat transfer Fluid: Fluid temperature:	11.05.2006 Δ p-test facility with U-tube differential pressure gauge Gerd Schiewe (employee of the Test Centre) water 20 \pm 2°C				
Mass flow rate in kg/h	30.1	70.8	129.9	209.9	301.3
Pressure drop in mbar	0.5	1.6	3.5	6.9	12.0

Compared to the measurement using water, the pressure drop will be markedly higher when using a water-glycol mixture as heat transfer fluid, because its viscosity is much higher.

Fig. 13-1: Measured pressure drop of the collector (heat transfer fluid: water)

Company:	Thermomax Ltd.	Page:	16 of 20
Type:	DF 100 20	Report no.:	106-06/D
Serial no.:	MB 08626	Report date:	02.11.2006

14. Observations; Status of the Collector

Status of the collector after

*	delivery:	faultless
*	exposure to irradiation:	no change
*	performance test:	no change
*	end of tests:	no change

There were no extraordinary incidents during the tests.

No sharp edges, loose fixing elements or other characteristics representing a possible endangering were observed.

15. Stipulations from the Test Centre

- 1. This test report is valid for the collector DF 100 20 (description see section 2) with the serial number MB 08626.
- Prior to passing on to others or reproducing parts of this test report, permission must be obtained. Passing on the single pages 3, 19 and 20 or the coherent pages 1 to 16 or the complete test report is generally approved.

Test Centre for Solar Thermal Components and Systems

Curden Lompo

рр

Dipl.-Ing. C. Lampe deputy head of Test Centre-EN

CLa/02.11.2006 blg10606_engl.fm

Company:	Thermomax Ltd.	Page:	17 of 20
Type:	DF 100 20	Report no.:	106-06/D
Serial no.:	MB 08626	Report date:	02.11.2006

Table A-1:	Measured and Calculated Data from the Efficiency Tests, Related to the
	Aperture Area

No.	G	ṁ	t _{in}	t _e	t _e - t _{in}	t _m	t _a	t _m - t _a	T* _m	η a
-	W/m²	kg/h	°C	°C	К	°C	°C	К	Km²/W	-
1	874.5	149.6	21.6	30.0	8.4	25.8	25.8	0.0	0.0000	0.774
2	874.6	149.5	21.6	30.0	8.4	25.8	25.9	0.0	0.0000	0.773
3	875.2	150.3	40.5	48.5	8.0	44.5	26.0	18.5	0.0211	0.741
4	874.1	150.1	40.5	48.5	8.0	44.5	26.0	18.5	0.0212	0.741
5	873.6	149.5	60.3	67.9	7.6	64.1	26.1	38.0	0.0435	0.701
6	875.1	149.5	60.3	67.9	7.6	64.1	25.9	38.2	0.0437	0.701
7	873.9	150.0	80.2	87.3	7.1	83.7	26.1	57.6	0.0660	0.657
8	873.5	150.1	80.3	87.3	7.0	83.8	26.0	57.8	0.0662	0.656
9	872.9	150.7	80.3	87.3	7.0	83.8	26.4	57.4	0.0658	0.657
10	873.1	150.7	80.3	87.3	7.0	83.8	26.3	57.5	0.0658	0.658
11	874.0	149.4	60.4	68.0	7.6	64.2	26.3	37.9	0.0434	0.700
12	875.0	149.4	60.3	67.9	7.6	64.1	26.3	37.8	0.0432	0.700
13	874.6	149.9	40.5	48.5	8.0	44.5	25.9	18.6	0.0213	0.742
14	875.5	149.9	40.5	48.5	8.0	44.5	26.0	18.6	0.0212	0.742
15	874.0	150.0	21.7	30.0	8.3	25.8	25.8	0.1	0.0001	0.772
16	872.8	150.1	21.7	30.0	8.3	25.8	25.7	0.1	0.0001	0.773

<u>Nomen</u>	<u>clature:</u>	
G	W/m²	hemispherical (= global) solar irradiance in the collector plane
ṁ	kg/h	mass flow rate of the heat transfer fluid
t _{in,} t _e	°C	collector inlet temperature and collector outlet (exit) temperature
t _m	°C	mean temperature of heat transfer fluid, t _m : = (t _{in} + t _e)/2
t _a	°C	ambient temperature
T* _m	(m²K)/W	reduced temperature difference, $T_m^* = (t_m - t_a)/G$
η_a	-	collector thermal efficiency, related to the aperture area

Company:	Thermomax Ltd.	Page:	18 of 20
Type:	DF 100 20	Report no.:	106-06/D
Serial no.:	MB 08626	Report date:	02.11.2006

<u>Table A-2:</u>	Temperatures at Different Positions of the Collector, Meteorological
	Quantities

No.	t _{in}	t _e	t _m	t _a	t _s	t _{glas}	t _{back}	u
-	°C	°C	°C	°C	°C	°C	°C	m/s
1	21.6	30.0	25.8	25.8	24.1	27.7	26.2	3.3
2	21.6	30.0	25.8	25.9	24.2	27.7	26.2	3.3
3	40.5	48.5	44.5	26.0	24.3	28.1	26.4	3.3
4	40.5	48.5	44.5	26.0	24.3	28.2	26.5	3.3
5	60.3	67.9	64.1	26.1	24.2	28.6	26.6	3.3
6	60.3	67.9	64.1	25.9	23.9	28.4	26.5	3.3
7	80.2	87.3	83.7	26.1	24.1	29.0	26.7	3.3
8	80.3	87.3	83.8	26.0	23.9	28.9	26.6	3.3
9	80.3	87.3	83.8	26.4	24.4	29.3	27.0	3.3
10	80.3	87.3	83.8	26.3	24.3	29.1	26.9	3.3
11	60.4	68.0	64.2	26.3	24.8	28.7	26.6	3.3
12	60.3	67.9	64.1	26.3	24.9	28.7	26.7	3.3
13	40.5	48.5	44.5	25.9	24.1	28.0	26.2	3.3
14	40.5	48.5	44.5	26.0	24.2	28.0	26.2	3.3
15	21.7	30.0	25.8	25.8	24.0	27.7	26.0	3.3
16	21.7	30.0	25.8	25.7	23.8	27.6	26.0	3.3

<u>Nomen</u>	clature:	
t _{in,} t _e	°C	collector inlet temperature and collector outlet (exit) temperature
tm	°C	mean temperature of heat transfer fluid, t _m : = (t _{in} + t _e)/2
t _a	°C	ambient temperature
t _s	°C	sky temperature
t _{alas}	°C	temperature of the transparent cover
t _{back}	°C	temperature of the backside of the collector
u	m/s	surrounding air speed

